Propionate citric acid cycle

The fatty acid oxidation sequence just described is typical when the incoming fatty acid is saturated (having only single bonds in its carbon chain). However, most of the fatty acids in the triacylglycerols and phospholipids of animals and plants are unsaturated, having one or more double bonds. These bonds are in the cis configuration and cannot be acted upon by enoyl-CoA hydratase, the enzyme catalyzing the addition of H 2 O to the trans double bond of the Δ 2 -enoyl-CoA generated during β oxidation. However, by the action of two auxiliary enzymes, the fatty acid oxidation sequence described above can also break down the common unsaturated fatty acids. The action of these two enzymes, one an isomerase and the other a reductase, will be illustrated by two examples.

Metabolism of propanoate begins with its conversion to propionyl coenzyme A (propionyl-CoA), the usual first step in the metabolism of carboxylic acids. Since propanoic acid has three carbons, propionyl-CoA can directly enter neither beta oxidation nor the citric acid cycles. In most vertebrates, propionyl-CoA is carboxylated to D-methylmalonyl-CoA, which is isomerised to L-methylmalonyl-CoA. A vitamin B 12 -dependent enzyme catalyzes rearrangement of L-methylmalonyl-CoA to succinyl-CoA, which is an intermediate of the citric acid cycle and can be readily incorporated there.

Propionate citric acid cycle

propionate citric acid cycle


propionate citric acid cyclepropionate citric acid cyclepropionate citric acid cyclepropionate citric acid cyclepropionate citric acid cycle